

MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY BATHINDA-151001 (PUNJAB), INDIA

(A State University Estb. by Govt. of Punjab vide Punjab Act No. 5 of 2015 and Approved u/s 2(f) & 12 (B) of UGC; Member AIU)

Department: ELECTRONICS & COMMUNICATION ENGINEERING Giani Zail Singh Campus College of Engineering & Technology, MRSPTU

Program: M Tech Electronics & Communication Engineering

Subject	S Code	Semester	Credit	Duration (Hrs)	LTP	cos	Statement	P01	PO2	PO3	P04	PO5	PO6	P07	PO8	PSO1	PSO2
ation						C01	To understand the concept of orthogonal signals and orthogonalization procedure	3	3					3		3	2
mmunic ems	1-101				0	C02	To analyze the performance of band-limited channels	3	3					3		3	
nced Cor Syste	MECE:	1	4	45	4 0	CO3	To evaluate the receiver performance in fading channels	3	3					3		3	
Adva						C04	To differentiate b/w various OFDM issues.	3	3					3		3	

COURSE ARTICULATION MATRIX (STUDY SCHEME: 2016)

and ms						C01	Understand microcontrollers and components of typical embedded systems.	3		3				3		3	
rollers a	1-102	1	4	45	0 (C02	Create embedded hardware design and development.	3	3	3				3		3	2
crocont	MECE	Ţ	4	45	40	CO3	Understand ARM architecture and its design philosophy.	3	3	2				3		3	
Mic Err						CO4	Apply ARM Programming for real time applications and memory management.	3	3	3		2		3		3	3
						CO1	Explain and apply digital electronic principles and guidelines for design of complex electronic systems design, from arithmetic circuit level to higher levels.	3	3				2	3	2	3	2
em Design	103					C02	Apply and understand the digital design principles for sequential machines and asynchronous finite state machines	3	3				2	3	2	3	2
ctronics Syst	MECE1-1	1	4	45	400	CO3	Describe the design methodology for multi-input system controllers and programmable system controllers-based systems.	3	3	2			2	3	2	3	2
Ele						CO4	Analyze and identify design issues like hazards, cycles and races in digital circuits	3	3				3	3	2	3	2
						505	Describe electromagnetic interference and compatibility issues and interfacing of digital system	3	3					3	2	3	2
arch o-1	1-104	1	2		0 4	C01	A student should know about various software tools available in the field of ECE	3	3	3	2	2		3	2	3	3
Rese Lat	MECE	T			0	C02	A student should have skill set for the usage of toolboxes pertaining to their curriculum	2	3	3				3		3	3

						CO3	A student should be able to apply these toolboxes for developing experiments/application/project etc.	3	3	3	3	2	2	3	2	3	3
nductor	56					C01	Ability to justify the role of different materials in modern electronic devices and applications.										
Semico Physics	ECE1-15	1	4	45	400	C02	Ability to justify the use of specific semiconductor devices for different applications										
Advance	Σ					CO3	Ability to develop a research temperament to propose optimal design solutions to complex engineering problems.										
nics						C01	Describe the basics of human nervous system.	3						3		3	
Electror	1-157	1	4	45	0(C02	Develop the basic understanding of electro-physiological measurements.	2	2				2	3		3	
nedical	MECE	Ţ	4	45	4 (CO3	Demonstrate the measurements of non-electrical parameters of human body.	3	3					3		3	
Bior						CO4	Identify and discuss about the different medical imaging equipment.	3	3	2			2	3		3	3
and						C01	To apply various channel and source coding schemes.	3	3					3		3	
Theory ing	1-158			45	0	C02	Differentiate between baseband and bandpass sampling theorems.	3	3					3		3	
mation Cod	MECE	1	4	45	4 C	CO3	Performance evaluation of various digital modulation techniques.	3	3					3		3	
Infor						CO4	To understand various waveform coding techniques.	3	3				2	3		3	
Hardware Description Languages and VLSI Design	MECE1-159	1	4	45	400	C01	Ability to distinguish between conventional electronic circuit design techniques and CMOS design technology.	3	3	3			2	3	2	3	

						C02	Ability to design combinational and sequential digital circuits using CMOS technology.	3	3	3	2	2	3	2	3	2
						CO3	Ability to design and model combinational and sequential digital circuits using state-of-the art CAD HDL tool.	3	3	3	2	2	3	2	3	2
Jano	60					C01	Discuss the process of crystal growth & preparation process.	3					3		3	
o and N	ECE1-1(1	4	45	400	C02	Understand the ion implantation techniques.	3					3		3	
Micr	Σ					£03	Develop an understanding of IC technology and IC fabrication process.	3	2			2	3	2	3	2
nd irs	51					C01	Discuss various types of sensors and transducers.	3					3		3	
nsors al ansduce	ECE1-1(1	4	45	400	C02	Describe the different sensors for their relevant applications.	3	3				3	2	3	2
Set	Σ					CO3	Analyze the characteristics of radiation, electro analytical and smart sensors.	3	3	2		2	3	2	3	2
.0						C01	To analyze speech signal models.	3	3				3		3	
nd Audi ssing	1-162	1		45	0 (C02	To evaluate speech signal coding.	3	3				3		3	2
beech a Proce	MECE	T	4	45	4 (CO3	Designing of various speaker identification systems.	3	3			2	3		3	
λς						CO4	To understand the concept of audio processing.	3	3				3		3	2
oft uting	1-163	1	4	A E	0 (C01	Understand and analyze different neural network models.	3	3				3		3	
Sc Comp	MECE	Ţ	4	45	4 (C02	Demonstrate various soft computing techniques.	3	3	3		3	3		3	

						CO3	Analyze and reveal different applications to solve various problems using soft computing techniques.	3	3	3			3	3	2	3	3
tion						C01	To analyze the development of different optical networks.	3	3					3		3	
munica em	1-205	-		40	0	C02	Differentiate between various optical sources and detectors	3	3					3		3	
cal Com Syst	MECE	2	4	48	40	CO3	To evaluate various optical fiber measurements.	3	3	3			2	3	2	3	2
Opti						C04	To compare the various optical n/w topologies.	3	3					3		3	
ital sing	J6					C01	Able to differentiate between various types of signals and systems	3	3					3		3	
ced Dig Process	ECE1-2(2	4	48	400	C02	The students will be able to design adaptive filters.	3	3				2	3	2	3	2
Advan Signal	Σ					CO3	Differentiate between various wavelet transforms.	3	3					3		3	
						C01	A student shall know about specific software toolboxes available in the field of ECE.	3	3	3	3	2	2	3	2	3	
arch Lab 2	CE1-207	2	4	-	004	C02	A student shall be able to use an application software/toolbox for problem solving in the related field	3	3	3	3	2	2	3	2	3	2
Rese	ME					CO3	A student shall be capable to decide their broad research domain for the thesis work based on their interest and skill set.	3	3	2	2	3	3	3	3	3	3
Digital Image Processi ng	MECE1- 264	2	4	40	400	C01	Apply various image transforms for image manipulations.	3	3	3				3	2	3	2

						C02	Deal with different operations on image processing for real time applications.	3	3	3	2	2	3	2	3	2
						CO3	Understand the need for image compression and to learn the spatial and frequency domain techniques of image compression.	3	3	3	2	2	3	2	3	2
						C04	Develop various image processing applications.	3	3	3	2	2	3	2	3	2
e ation	:65					C01	Explain the architecture of satellite communication as a means of high speed and high range communication system	3	3			2	3	2	3	
Satellit	MECE1-2	2	4	48	400	C02	Implement general link design equations and concepts related to it.	2	3	2		2	3	2	3	1
C						CO3	Describe the various satellite applications.	3					3		3	
rity						C01	Understand various multimedia communication and compression techniques.	3	3				3		3	
n Secul	1-266	2		40	0 0	C02	Analyze network and computer security issues.	3	3				3		3	
ormatio	MECE	2	4	48	40	CO3	Apply network security services and mechanisms.	3	3	3		2	3	2	3	2
Info						CO4	Develop various cryptographic algorithms for real time applications.	3	3	3		2	3	2	3	2
allel ssing	1-267	2		40	0	C01	Understand the need and applications of parallel computer models.	3	2				3	2	3	3
Para Proce	MECE	2	4	48	4 0	C02	Explain different types of hardware and software parallelism and conditions	3	2	3	2		3	2	3	3

						CO3	Describe various system interconnect architectures and advanced processor architectures like RISC/CISC/superscalar/VLIW etc	3	2	3		2		3	2	3	3
						C04	To understand design basics of different types of pipelines and related issues and defend the need of pipelining	3	2	3		2		3	2	3	3
						CO5	To describe multiprocessor architectures and related issues of memory consistency, cache coherence and directory protocols	3	2	3		2		3	2	3	3
nics	88					C01	Explain the conceptual background of nano-technology.	2						3		3	
) Electro	ECE1-26	2	4	48	400	C02	Demonstrate the types, formation and properties of nanotubes.	3						3		3	
Nang	Σ					CO3	Identify, describe and learn the characterization techniques used in nano-scale devices	3						3		3	
stem						C01	To compare various text, audio and video multimedia tools.	3	3	3			2	3	2	3	2
media tion Sys	1-269	2	4	10	00	C02	To design 2D and 3D animations.	3	3	3			2	3	2	3	2
Multii munica	MECE	2	4	40	4 (CO3	To analyze various designing tools.	3	3	3			2	3	2	3	2
Com						C04	To understand the concept of multimedia.	3	3					3		3	
Network sis and ysis	1-270	2		46	0	C01	Understand the concept of data transmission and various transmission impairments.	3	3					3		3	
Advanced Synthe: Anal	MECE	2	4	48	4 0	C02	Create switching and computer/communication networks.	3	3	3	2		2	3	2	3	2

						CO3	Apply various network security considerations in real time applications	3	3	3	2		2	3	2	3	2
						CO4	Analyze network problems and various factors such as throughput, latency and bandwidth.	3	3	3	2		2	3	2	3	2
o /stems MS)	1					C01	Discuss the basic concepts of MEMS technology.	3						3		3	
o & Nan chnical Sy and NEI	CE1-27:	2	4	48	400	C02	Explain the technology involved in fabrication of MEMS devices.	3						3		3	
Micr Electrotec (MEMS	ME					£03	Demonstrate the design considerations of microwave systems using MEMS technology.	3						3		3	
gy						C01	Analyze and investigate the business problems and development into research problems.	1								2	
h Methodolo	3EM1-101	3	4	45	400	CO2	Identify and apply the latest appropriate research approaches and techniques for developing solutions of research problems		2	3	1					2	2
Researc	M					CO3	Relate ethical and philosophical consideration in business reach findings in report form						2				2
						CO4	Apply various statistical techniques and present the research findings in report form.					1		2			2
						C01	Synthesis of knowledge.	3	3	2			3	3	3	3	2
ject	1-308	3	R		10	CO2	To demonstrate the aptitude of applying the own knowledge to solve a specific problem.	3	3	2			2	3	2	3	2
Pro	MECE	5	0		0 0	CO3	To mature the knowledge.	3	3	2						3	
						C04	Able to organize, compile and record all work details in an efficient manner	3	3	2						3	2

						C01	An ability to utilize technical resources	3	3				3		3	
Seminar	AECE1-309	3	2	-	004	C02	An ability to write technical documents and give oral presentations related to the work completed	3	3			3	3	3	3	3
	2					CO3	To learn preparation and presentation of scientific papers in an exhaustive manner	3	3			3	3	3	3	3
- -						C01	Gain understanding of different parameters used to characterize antennas.	3	3				3		3	
n Design	72					C02	Know how to analyze wire and aperture radiating elements	3	3	2			3		3	
System	ECE1-37	3	4	45	400	CO3	Be able to design various antennas and arrays for many communication systems.	3	3	3	2	2	3	2	3	2
Antenna	Σ					C04	Implementation of radio wave propagation mechanisms while designing an antenna.	3	3	3	2	2	3	2	3	2
						CO5	An ability to understand basic terminology	3	3				3		3	
ജ						C01	Describe the model and calculate the capacity of typical digital communication channels.	3	3				3		3	
nd Codi	373					C02	Demonstrate the encoding and decoding procedures of various error control codes	3	3				3		3	
Control a	MECE1-3	3	4	45	400	CO3	Compare the error correction capability of different error control codes and their performances.	3	3				3		3	
Error						C04	Apply error control coding to achieve error detection and correction in digital transmission systems	3	3	2			3		3	

						CO5	Design an error detecting and correcting system for semiconductor memory system to meet given system specification.	3	3	2			2	3	2	3	2
ос						C01	To understand the adhoc networks.	3	3					3		3	
ind Adh vorks	1-374	2	4	45	0 0	C02	To learn the data transmission flow in adhoc networks	3	3					3		3	
ireless a Netw	MECE	5	4	45	4 (CO3	To understand the security of sensor networks	3	3					3		3	
Ň						C04	To understand the applications of adhoc and sensor networks	3	3				2	3	2	3	2
ing						C01	Qualitatively describe the mechanisms of speech production.	3	3					3		3	
io Process	-375					C02	Apply programming tools (such as MATLAB) to analyze speech and audio signals in time and frequency domains.	3	3	3		2	3	3	2	3	2
h and Aud	MECE1	3	4	45	4 0 (CO3	Analyze, compare and implement methods and systems for filtering and coding of speech and audio signals	3	3	3				3		3	2
Speec						C04	Analyze the methods and systems for enhancement of speech and audio signals in environmental noisy conditions.	3	3	3				3		3	2
sertation	1-410				20	CO1	Design and execute a meaningful research project that demonstrates spatial thinking and uses the knowledge and skills.	3	3	3	3	2	3	3	2	3	2
sis/Dis	MECE:	4	24	-	00	C02	Define and analyze a problem in latest research areas.	3	3	3	3	3	3	3	3	3	3
The						CO3	Formulate and write a research proposal.	3	3	3	3	3	3	3	3	3	2

CO4	Able to learn effectively record data and experiments so that others can understand them.	3	3	3	3	2	2	3	2	2	2
CO5	Communicate the findings by means of a thesis, written in the format specified by the department/institute.	3	3	3	3	3	3	2	3	3	2

Enter Correction levels 1, 2 or 3 as defined below:

1. Slight (Low) - upto 30% 2. Moderate (Medium) – above 30% and upto70% 3. Substantial (High) – above 70%